If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+15x-6=0
a = 24; b = 15; c = -6;
Δ = b2-4ac
Δ = 152-4·24·(-6)
Δ = 801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{801}=\sqrt{9*89}=\sqrt{9}*\sqrt{89}=3\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-3\sqrt{89}}{2*24}=\frac{-15-3\sqrt{89}}{48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+3\sqrt{89}}{2*24}=\frac{-15+3\sqrt{89}}{48} $
| 10x-12-8x+1=180 | | 10x-12-8x+1=90 | | 10x-12=8x+1=180 | | 1h=7 | | 7+6r=r-5 | | 10x-12,8x+1=180 | | (14x-2)=(12x+8) | | R^2-15=t+19 | | 6.75+8$+1.36+p=20 | | 7(x-19)=82 | | 6(n-2)=(n+1) | | 4x²+5=12x | | 17x+20(13-4x)=197 | | 17=7v–18 | | 1/2y-4=-12 | | 11x-33=7x+7 | | 1.8x10^-5=x^2/2 | | 12x+3(13-4x)=39 | | 15x=286 | | 12x+39-12x=39 | | 20(3h-6)=40 | | -6(10-j)+2=2(3j)-58 | | 3z-4(z+1)=8z+3 | | 15n—3n-13n+7=17 | | 5-6+3j=2/3 | | 4(2x+7)=2(2x+6) | | 2(k/2)=k+1 | | -4(3/2x-1/2)= | | -7(-6k-8)+5(k+1)=1-2k-4k+7 | | -(d+8)-10=90 | | (x-12)(x+7)=0 | | 10x-12=8x+1 |